

The Swiss «Solar Plan»

Learnings for PV advocacy

EU PVSEC 2020 | 11 September 2020

Roger Nordmann, MP Swiss Parliament

President of Swissolar

Member of the Environment, Spatial Planning and Energy Committee of the National Council (President 2018/2019)

Board member swisscleantech Association

President of the Social-democratic Group in the Swiss Parliament

Only PV Can Deliver Enough Power to Decarbonise

Agenda

- 1. The starting point
- 2. Specific circumstances
- 3. The challenge of the power generation
- 4. Reversal of paradigms: PV as the main pillar
- 5. The features of my basic scenario
- 6. Peak-shaving and gas
- 7. Peak-shaving enables us to install more PV
- 8. Results in the basic scenario
- 9. The CO₂ balance sheet of the basic scenario
- 10. Only a basic scenario, not an optimal
- 11. Learnings for PV advocacy

1. The starting point

Power Generation Switzerland 2019

2017: 58 % approval in referendum to ban new nuclear power plant.

This bill only finances half of substitution of nuclear electricity.

Furthermore: We need much more electricity for decarbonisation.

2. Specific circumstances

Difficulties

- The lack of space limits biomass, wind power and ground-mounted PV
- Most hydropower in late spring when snow is melting, but higher consumption in winter for heating
- Little additional potential for hydropower

Opportunities

- High solar potential, in priority rooftop
- Huge existing hydro storage capacity:
 1000 kWh/capita, 500 W/capita.
 - No problem for additional short-run and weekly grid balancing
 - but no reserve for additional storage from summer to winter.

Image: wikipedia

3. The challenge of the power generation

The monthly electricity production and consumption in Switzerland: 72 months 2011-2016

3. The challenge of the power generation

The monthly electricity production and consumption in Switzerland: nuclear removed + new consumption

EU PVSEC 2020 | 11.9.2020

© Roger Nordmann

4. Reversal of paradigms: PV as the main pillar

Emphasising the winter problem brought us more credibility

Only PV has the quantitative potential to deliver (120 GW possible)

→ PV from «nice to have» to «main source»

Need to counter widespread prejudices

Also to overcome prejudices of ecologists against more electricity

Two key technical challenges

- how to guarantee electricity supply in winter
- -how to manage the grid when the sun is strong

5. The features of my basic scenario

- Consumption remains constant for actual use of electricity
- Additional consumption included for full decarbonisation of building and transport (without aviation)
- Only PV is growing. Other renewables don't develop (= pessimistic)
- Every summer month: 1 TWh → Power-to-gas → 0,3 TWh/m. in winter
- No increase in monthly export during summer or import during winter
- Only minimal grid improvement

Proposed PV deployment:

- from 2.5 GW to 50 GW (equivalent to 500 GW in Germany)
- =from 0.3 to 6 kW/capita

6. Peak-shaving and gas

Perception as an extremist proposal?

No, because I coped with the two main challenges:

- 1 temporarily too much solar electricity?
- real-time peak-shaving (=curtailment= excessive energy isn't harvested)
- 2 temporarily not enough electricity?
- first hydropower reserve, and if necessary gas power generation (fossil = +/- taboo in Switzerland).

7. More PV thanks to Peak-shaving

Example: static peak-shaving at 35 % of nominal power

Only 20% loss of production (when electricity price is low)

Allows more installation and higher PV production in winter, spring and fall

8. Results in the basic scenario

9. The CO2 balance sheet of the basic scenario

Full decarb Million tons CO, 2017 (off-) road and buildings (off-) Road 16 0 = 3/5 of overall Buildings 14.8 **Swiss GHG** Fossil power 0 4.4 **Emissions** Generation Total 30.8 4.4 Decrease CO, -86%

10. Only a basic scenario, no optimum

Technical improvement is possible. No doubt . (Computed as variants in my book)

Economical improvement too. Peak-shaving is a kind of practicable base-line.

But the main advantage of using conservative parameter is to open the discussion with conservative people.

The burden of proof changed side: it's up to our opponents now...

The quantitative ambition of my plan helped to trigger the financing discussion: how to overcome the investment weakness of the "Energy only market"?

11. Learnings for PV advocacy

Oiadhosiic Personasion

- 1. Non only list the problems, but structure them
- 2. Focus on the main questions
- 3. Understand existing cultural representations
- 4. Trace a way and remove obstacles, including prejudices of your allies
- 5. Don't hide the difficulties. Address them
- 6. Assume pessimistic hypothesis to make your plan more robust
- 7. Not only facts and arguments matter. Ask your opponents how they would solve the problem.
- 8. Consider the interests of your opponents. It helps them to leave their deadend road.
- 9. Keep in mind: "energy" is not only a technical and physical concept, but touch also psychology, health, way of life

More information:

www.roger-nordmann.ch

French edition May 2019

https://www.editionsfavre.com/livres/leplan-solaire-et-climat/

www.swissolar.ch

German translation August 2019

https://www.zytglogge.ch/sonne-fuer-klimatschutzsolarplan-solarenergie-sonnenenergie-roger-nordmann

Annexe/Reserve

Le potentiel en Suisse

TWh	exploitable	Exploitatble à court et moyen	Surface au sol
		terme	[km ²]
Toits	49.1	23.3	153
Façades	17.2	8.2	(Surf. verticale: 107.4)
Routes	24.7	2.5	16.2
Parking	4.9	3.9	25.7
Bordure d'autoroutes	5.6	3.9	25.7
Alpes (Pâturages)	16.4	3.3	31.3
Total	117.9	45.1	251.9 (Sans façades)

Electricité renouvelable hors hydro

Situation 2018: 2 GW produisant 2 TWh

Potentiel économique: 118 TWh Dont 45 TWh à court et moyen terme

Notre proposition:

Passer de 2 à 50 GW de photovoltaïque d'ici 30 ans. (2018 x 25)

La variabilité du photovoltaïque

Les 31 jours de mars 2017 (MWh/quart d'heure)

Les 31 jours de juin 2017 (MWh/quart d'heure)

Les 30 jours de septembre 2017 (MWh/quart d'heure)

Extreme Peak-shaving at 35% of nominal power (static in this exemple)

All ¼ hours, classified from the strongest to the weakest

1st step: PV at 20 GW = 10x more than 2018 2^{nd} step: PV at 50 GW = 2^{5} x more than 2018

Summer midday
(50 GW inst. PV
Peak-shaving 30%=
15 GW)
(Hypothesis: only central storage 2x actual, no electrical car, actual consumption)
Upward load 8 GW

Thanks to PeakShaving:
→ No problem until 50
GW (6 kW /per capita)